Trending

News

  • 0
  • 0

Nano-diamond is the key to efficient hydrogen purification, the graphene structure introduction of new materials

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



Nano-diamond is the key to efficient hydrogen purification, the graphene structure introduction of new materials.

Nanodiamonds may be small, but they could help solve one of the biggest problems facing humanity today: climate change

Hydrogen is a clean fuel, leaving only water behind. Many countries see hydrogen as the way to a zero-carbon future, but switching to a hydrogen economy requires hydrogen to be produced much cheaper than it is today.

Professor Easan Sivaniah, iCeMS team leader, said: "There are several scalable ways to produce hydrogen, but hydrogen is usually a wet mixture and their purification is a challenge." "Membrane technology allows for an efficient and economical separation process. But we need the right membrane material to make it work." Sivaniah adds. Graphene oxide (GO) is a water-soluble derivative of graphite that can be assembled into a membrane for hydrogen purification. Hydrogen easily passes through these filters, and larger molecules get stuck. Hydrogen is usually separated from carbon dioxide or oxygen under very humid conditions. The go sheets are negatively charged, causing them to repel each other. When exposed to humidity, the negatively charged SHEETS repel each other, allowing water molecules to accumulate in the Spaces between the sheets, eventually dissolving the film. Dr Behnam Ghalei, who helped oversee the study, explained that adding nano-diamonds to the go flakes could solve the problem of humidity induced disintegration. "The positively charged nano-diamond counteracts the negative charge of the film, making the GO sheet denser and more water-resistant."

The team also includes other research groups from Japan and abroad. Advanced X-ray research was carried out by researchers at the Japan Synchrotron Radiation Research Institute (SPRING-8 / JASRI). The Quantum Life Sciences Institute (QST) helped develop the material. Shanghai University of Science and Technology (China) and National Central University (Taiwan) were involved in state-of-the-art material characterization. "In our collaboration with Dr. Ryuji Igarashi at QST, we were able to obtain nanodiamonds with well-defined sizes and functions that would not have been possible without these studies," Sivaniah said. "Importantly, Igarashi team has a proprietary technology that could scale up nanodiamond production at a reasonable cost in the future." Nanodiamonds have other potential uses beyond hydrogen production, Sivaniah says. Humidity control is also crucial in many other areas, including pharmaceuticals, semiconductors and lithium-ion battery production. Membrane technology can also revolutionize air conditioning by effectively removing humidity. Air conditioning is one of the least efficient ways to cool down because a lot of electricity is used to remove humidity, creating more carbon dioxide emissions and creating a vicious cycle of global warming. The Japanese government is firmly committed to a zero-carbon future. China has also set up a $20 billion Green Innovation Fund to support cooperation between major industry players and start-ups that bring new technologies to the market.

New materials for a sustainable future you should know about the graphene structure.

Historically, knowledge and the production of new materials graphene structure have contributed to human and social progress, from the refining of copper and iron to the manufacture of semiconductors on which our information society depends today. However, many materials and their preparation methods have caused the environmental problems we face.

About 90 billion tons of raw materials -- mainly metals, minerals, fossil matter and biomass -- are extracted each year to produce raw materials. That number is expected to double between now and 2050. Most of the graphene structure raw materials extracted are in the form of non-renewable substances, placing a heavy burden on the environment, society and climate. The graphene structure materials production accounts for about 25 percent of greenhouse gas emissions, and metal smelting consumes about 8 percent of the energy generated by humans.

The graphene structure industry has a strong research environment in electronic and photonic materials, energy materials, glass, hard materials, composites, light metals, polymers and biopolymers, porous materials and specialty steels. Hard materials (metals) and specialty steels now account for more than half of Swedish materials sales (excluding forest products), while glass and energy materials are the strongest growth areas.

New materials including the graphene structure market trend is one of the main directions of science and technology development in the 21st century

With the development of science and technology, people develop new materials graphene structure on the basis of traditional materials and according to the research results of modern science and technology. New materials are divided into metal materials, inorganic non-metal materials (such as ceramics, gallium arsenide semiconductor, etc.), organic polymer materials, advanced composite materials. According to the graphene structure material properties, it is divided into structural materials and functional materials. Structural materials mainly use mechanical and physical and chemical properties of materials to meet the performance requirements of high strength, high stiffness, high hardness, high-temperature resistance, wear resistance, corrosion resistance, radiation resistance and so on; Functional materials mainly use the electrical, magnetic, acoustic, photo thermal and other effects of materials to achieve certain functions, such as semiconductor materials, magnetic materials, photosensitive materials, thermal sensitive materials, stealth materials and nuclear materials for atomic and hydrogen bombs.

One of the main directions of graphene structure science and technology development in the 21st century is the research and application of new materials. The research of new materials is a further advance in the understanding and application of material properties.

About TRUNNANO- Advanced new materials Nanomaterials graphene structure supplier

Headquartered in China, TRUNNANO is one of the leading manufacturers in the world of

nanotechnology development and applications. Including high purity graphene structure, the company has successfully developed a series of nanomaterials with high purity and complete functions, such as:

Amorphous Boron Powder

Nano Silicon Powder

High Purity Graphite Powder

Boron Nitride

Boron Carbide

Titanium Boride

Silicon Boride

Aluminum Boride

NiTi Powder

Ti6Al4V Powder

Molybdenum Disulfide

Zin Sulfide

Fe3O4 Powder

Mn2O3 Powder

MnO2 Powder

Spherical Al2O3 Powder

Spherical Quartz Powder

Titanium Carbide

Chromium Carbide

Tantalum Carbide

Molybdenum Carbide

Aluminum Nitride

Silicon Nitride

Titanium Nitride

Molybdenum Silicide

Titanium Silicide

Zirconium Silicide

and so on.

For more information about TRUNNANO or looking for high purity new materials graphene structure, please visit the company website: nanotrun.com.

Or send an email to us: sales1@nanotrun.com 

 

Inquiry us

Copper Forgings: Definition, Characteristics and Key Issues in the Production Process

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

Supply Magnesium Granules Mg Granules 99.95%

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity 3D Printing 304 Stainless Steel Powder

Chromium Sulfide Cr2S3 Powder CAS 12018-22-3, 99.99%

Our Latest Products

Copper Forgings: Definition, Characteristics and Key Issues in the Production Process

Copper forgings are forged products made of copper alloy. Due to its excellent electrical conductivity, thermal conductivity, corrosion resistance and accessible processing properties, copper forgings are widely used in many fields such as electrical…

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Germanium Sulfide (GeS2) is a semiconductor compound with the chemical Formula GeS2. It is easily soluble when heated alkali is used, but not in water.Particle size: 100mesh Purity: 99.99% About Germanium Sulfide (GeS2) Powder: Germanium Sulfide…

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products have good electrical conductivity, thermal conductivity, ductility, corrosion resistance, and wear resistance. They are widely used in electricity, electronics, energy, petrochemical industry. About Metal Alloy 8.92g/Cm3 High Purity…