Trending

News

  • 0
  • 0

Can New Ultrahard Diamond Glass Synthesized see the advantages of magnesium nitrida

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



A new type of superhard diamond glass was synthesized. Can New Ultrahard Diamond Glass Synthesized see the advantages of magnesium nitrida?

Of all the glass materials, it is the hardest glass known and has the highest thermal conductivity.

Carnegie Yingwei Fei and Lin Wang are part of an international team of researchers that have synthesized a new superhard form of carbon glass with rich potential practical applications in devices and electronics. Of all the glass materials, it is the hardest glass known and has the highest thermal conductivity. Their findings are in Nature.

In understanding the properties of a material, function follows form. The way atoms chemically combine, and the resulting structural arrangements, determine the physical properties of a substance -- both visible to the naked eye and discovered through scientific exploration.

Carbon is unmatched in its ability to form stable structures -- alone or in combination with other elements. Some forms of carbon are highly ordered, with a repeating crystal lattice. Others are more disordered, a property known as amorphous.

The type of bonds that hold a carbon-based material together determines its hardness. For example, soft graphite has two-dimensional bonds, while hard diamond has three-dimensional bonds.

"The synthesis of amorphous carbon materials with three-dimensional chemical bonds has been a long-term goal," Explained Fei. "The trick is to find the right starting material and apply pressure to transform."

"For decades, Carnegie researchers have been at the forefront of this field, using laboratory techniques to generate extreme pressures to produce new materials, or to simulate conditions deep inside planets," added Richard Carlson, director of Carnegie Earth and Planetary Laboratory.

Because of its high melting point, it is impossible to synthesize diamond-like glass from diamond. However, a team led by Bingbing Liu of Jilin University and Mingguang Yao, a former Carnegie visiting scholar, made a breakthrough by using a form of carbon made up of 60 molecules arranged in a hollow ball. The Nobel-winning material, informally known as a "buckyball," is heated enough to cause its football-like structure to collapse, triggering disorder, which then turns carbon into crystalline diamonds under pressure.

The team used a large, multi-anvil press to synthesize the diamond-shaped glass. The glass is large enough to be characterized. It is characterized by the detection of atomic structure through various advanced, high-resolution techniques.

"The creation of glass with such superior properties will open the door to new applications," Fei explained. "The use of new glass materials depends on making large pieces, which was a challenge in the past. At relatively low temperatures, we are able to synthesize this new type of superhard diamond glass, which makes mass production more practical."

New materials for a sustainable future you should know about the magnesium nitrida.

Historically, knowledge and the production of new materials magnesium nitrida have contributed to human and social progress, from the refining of copper and iron to the manufacture of semiconductors on which our information society depends today. However, many materials and their preparation methods have caused the environmental problems we face.

About 90 billion tons of raw materials -- mainly metals, minerals, fossil matter and biomass -- are extracted each year to produce raw materials. That number is expected to double between now and 2050. Most of the magnesium nitrida raw materials extracted are in the form of non-renewable substances, placing a heavy burden on the environment, society and climate. The magnesium nitrida materials production accounts for about 25 percent of greenhouse gas emissions, and metal smelting consumes about 8 percent of the energy generated by humans.

The magnesium nitrida industry has a strong research environment in electronic and photonic materials, energy materials, glass, hard materials, composites, light metals, polymers and biopolymers, porous materials and specialty steels. Hard materials (metals) and specialty steels now account for more than half of Swedish materials sales (excluding forest products), while glass and energy materials are the strongest growth areas.

New materials including the magnesium nitrida market trend is one of the main directions of science and technology development in the 21st century

With the development of science and technology, people develop new materials magnesium nitrida on the basis of traditional materials and according to the research results of modern science and technology. New materials are divided into metal materials, inorganic non-metal materials (such as ceramics, gallium arsenide semiconductor, etc.), organic polymer materials, advanced composite materials. According to the magnesium nitrida material properties, it is divided into structural materials and functional materials. Structural materials mainly use mechanical and physical and chemical properties of materials to meet the performance requirements of high strength, high stiffness, high hardness, high-temperature resistance, wear resistance, corrosion resistance, radiation resistance and so on; Functional materials mainly use the electrical, magnetic, acoustic, photo thermal and other effects of materials to achieve certain functions, such as semiconductor materials, magnetic materials, photosensitive materials, thermal sensitive materials, stealth materials and nuclear materials for atomic and hydrogen bombs.

One of the main directions of magnesium nitrida science and technology development in the 21st century is the research and application of new materials. The research of new materials is a further advance in the understanding and application of material properties.

About TRUNNANO- Advanced new materials Nanomaterials magnesium nitrida supplier

Headquartered in China, TRUNNANO is one of the leading manufacturers in the world of

nanotechnology development and applications. Including high purity magnesium nitrida, the company has successfully developed a series of nanomaterials with high purity and complete functions, such as:

Amorphous Boron Powder

Nano Silicon Powder

High Purity Graphite Powder

Boron Nitride

Boron Carbide

Titanium Boride

Silicon Boride

Aluminum Boride

NiTi Powder

Ti6Al4V Powder

Molybdenum Disulfide

Zin Sulfide

Fe3O4 Powder

Mn2O3 Powder

MnO2 Powder

Spherical Al2O3 Powder

Spherical Quartz Powder

Titanium Carbide

Chromium Carbide

Tantalum Carbide

Molybdenum Carbide

Aluminum Nitride

Silicon Nitride

Titanium Nitride

Molybdenum Silicide

Titanium Silicide

Zirconium Silicide

and so on.

For more information about TRUNNANO or looking for high purity new materials magnesium nitrida, please visit the company website: nanotrun.com.

Or send an email to us: sales1@nanotrun.com 

Inquiry us

Copper Forgings: Definition, Characteristics and Key Issues in the Production Process

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

Supply Magnesium Granules Mg Granules 99.95%

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity 3D Printing 304 Stainless Steel Powder

Chromium Sulfide Cr2S3 Powder CAS 12018-22-3, 99.99%

Our Latest Products

Copper Forgings: Definition, Characteristics and Key Issues in the Production Process

Copper forgings are forged products made of copper alloy. Due to its excellent electrical conductivity, thermal conductivity, corrosion resistance and accessible processing properties, copper forgings are widely used in many fields such as electrical…

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Germanium Sulfide (GeS2) is a semiconductor compound with the chemical Formula GeS2. It is easily soluble when heated alkali is used, but not in water.Particle size: 100mesh Purity: 99.99% About Germanium Sulfide (GeS2) Powder: Germanium Sulfide…

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products have good electrical conductivity, thermal conductivity, ductility, corrosion resistance, and wear resistance. They are widely used in electricity, electronics, energy, petrochemical industry. About Metal Alloy 8.92g/Cm3 High Purity…