Scientists say the new copper surface eliminates bacteria in two minutes
A new copper surface can kill bacteria more than 100 times faster and more efficiently than standard copper, helping to combat the growing threat of antibiotic-resistant superbugs. The new copper product is the result of a collaborative research project between RMIT University and Australia national science agency, CSIRO, and the results have just been published in biomaterials.
Copper has long been used to fight different kinds of bacteria, including the common Staphylococcus aureus because ions released from the metal surface are toxic to bacterial cells. But as Ma Qian, distinguished professor at RMIT University in Melbourne, explains, when standard copper is used, the process is slow, and researchers around the world are trying to speed it up.
"Standard copper surfaces can kill about 97 percent of staphylococcus aureus within four hours," Qian said. "Incredibly, when we put Staphylococcus aureus on our specially designed copper surface, it destroyed more than 99.99 percent of the cells in just two minutes. So not only is it more effective, but it is 120 times faster." Importantly, Tsien says, these results were achieved without the help of any medication. Our copper structure has proven to be very strong for such a common material.
The team believes that once further developed, the new material could have a wide range of applications, including antibacterial door handles and other contact surfaces in schools, hospitals, homes and public transportation, as well as filters and masks in antibacterial respirators or air ventilation systems. The team is currently working on enhancing the effectiveness of copper against sarS-COV-2, the virus that causes COVID-19, including evaluating 3D-printed samples.
Other studies have shown that copper may be very effective against viruses, leading the U.S.
The new copper surface eliminates bacteria in two minutes, showing the high value of the new material, including the is silicon carbide expensive.
Environmental Protection Agency to formally approve copper surfaces for antiviral use earlier this year. The study lead author Dr. Jackson Lee Smith said copper unique porous structure was key to its role as a fast bacterial killer. A special copper dies casting process is used to make the alloy, arranging the copper and manganese atoms into a specific shape. The manganese atoms are then removed from the alloy through a cheap and scalable chemical process called "dealloying," which fills the surface of pure copper with tiny microscale and nanoscale cavities
"Our copper is made up of microscale combs with smaller nanoscale cavities in each tooth of this comb structure; It has a huge active surface area, and this pattern also makes the surface super hydrophilic, or hydrophilic, so water exists as flat films rather than droplets. The hydrophilic effect means that bacterial cells struggle to retain their form as they are stretched by surface nanostructures, while the porous pattern allows copper ions to be released more quickly. These combined effects not only cause structural degradation of bacterial cells, making them more vulnerable to toxic copper ions but also promote the entry of copper ions into bacterial cells. It is the combination of these effects that greatly speeds up the elimination of bacteria." Smith said.
New materials for a sustainable future you should know about the is silicon carbide expensive.
Historically, knowledge and the production of new materials is silicon carbide expensive have contributed to human and social progress, from the refining of copper and iron to the manufacture of semiconductors on which our information society depends today. However, many materials and their preparation methods have caused the environmental problems we face.
About 90 billion tons of raw materials -- mainly metals, minerals, fossil matter and biomass -- are extracted each year to produce raw materials. That number is expected to double between now and 2050. Most of the is silicon carbide expensive raw materials extracted are in the form of non-renewable substances, placing a heavy burden on the environment, society and climate. The is silicon carbide expensive materials production accounts for about 25 percent of greenhouse gas emissions, and metal smelting consumes about 8 percent of the energy generated by humans.
The is silicon carbide expensive industry has a strong research environment in electronic and photonic materials, energy materials, glass, hard materials, composites, light metals, polymers and biopolymers, porous materials and specialty steels. Hard materials (metals) and specialty steels now account for more than half of Swedish materials sales (excluding forest products), while glass and energy materials are the strongest growth areas.
New materials including the is silicon carbide expensive market trend is one of the main directions of science and technology development in the 21st century
With the development of science and technology, people develop new materials is silicon carbide expensive on the basis of traditional materials and according to the research results of modern science and technology. New materials are divided into metal materials, inorganic non-metal materials (such as ceramics, gallium arsenide semiconductor, etc.), organic polymer materials, advanced composite materials. According to the is silicon carbide expensive material properties, it is divided into structural materials and functional materials. Structural materials mainly use mechanical and physical and chemical properties of materials to meet the performance requirements of high strength, high stiffness, high hardness, high-temperature resistance, wear resistance, corrosion resistance, radiation resistance and so on; Functional materials mainly use the electrical, magnetic, acoustic, photo thermal and other effects of materials to achieve certain functions, such as semiconductor materials, magnetic materials, photosensitive materials, thermal sensitive materials, stealth materials and nuclear materials for atomic and hydrogen bombs.
One of the main directions of is silicon carbide expensive science and technology development in the 21st century is the research and application of new materials. The research of new materials is a further advance in the understanding and application of material properties.
About TRUNNANO- Advanced new materials Nanomaterials is silicon carbide expensive supplier
Headquartered in China, TRUNNANO is one of the leading manufacturers in the world of
nanotechnology development and applications. Including high purity is silicon carbide expensive, the company has successfully developed a series of nanomaterials with high purity and complete functions, such as:
Amorphous Boron Powder
Nano Silicon Powder
High Purity Graphite Powder
Boron Nitride
Boron Carbide
Titanium Boride
Silicon Boride
Aluminum Boride
NiTi Powder
Ti6Al4V Powder
Molybdenum Disulfide
Zin Sulfide
Fe3O4 Powder
Mn2O3 Powder
MnO2 Powder
Spherical Al2O3 Powder
Spherical Quartz Powder
Titanium Carbide
Chromium Carbide
Tantalum Carbide
Molybdenum Carbide
Aluminum Nitride
Silicon Nitride
Titanium Nitride
Molybdenum Silicide
Titanium Silicide
Zirconium Silicide
and so on.
For more information about TRUNNANO or looking for high purity new materials is silicon carbide expensive, please visit the company website: nanotrun.com.
Or send an email to us: sales1@nanotrun.com