Newly 3000°C Ablative Ceramic Coating Successfully Developed - Multi-boron-containing Single-phase Carbide
If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net
Boron carbide is also known as black Diamond. It has a molecular structure of B4C. The powder is typically grayish. It is one the three hardest materials known (the other two being diamond and cubic boronnitride). It can be found in many industrial applications, including tank armor, for body armor, as well as other applications. It has a Mohs toughness of 9.3. A large number of tests were conducted by the team of Academician Huang Boyun of Central South University’s National Laboratory of Powder Metallurgy to develop a new ceramic coating and composite materials that are resistant to 3000°C ablation. This discovery could pave a way for the creation of hypersonic cars.
According to Professor Xiong Xiang of the Institute of Powder Metallurgy of Central South University's Institute of Powder Metallurgy (IPM), hypersonic flight is defined as a flight speed that is at least 6120 kilometers per hour, or 5 times faster than the speed of the sound. With such high speeds, a flight from Beijing to New York could be completed in just 2 hours if the aircraft's key structural components can handle severe air friction as well as hot air impacts of 2000-3000 degrees Celsius. . Central South University has developed ceramic composites and coatings for ultra-high temperatures that provide a better level of protection for these components. The world's very first synthesis of a boron-containing single-phase ultra high temperature ceramic material made into a coating and perfect "fusion" was reported. In the current field, new materials are dominated by the study of mixed material systems in binary compound system. The successful application of materials quaternary to hypersonic will be greatly facilitated by its development.
The novel ceramic coated modified carbon/carbon material is composed by a single-phase carbide of zirconium (quarterary), titanium (quaternary), carbon and boron (quaternary) elements with a stable carbide structural structure. Infiltration of a multiceramic phase is the main method for obtaining it. The ultra high temperature ceramic combines the high-temperature adaptability of carbides and the anti-oxidation characteristics of borides. This makes the composites and the coatings have superior ablation and thermal shock resistance. The ceramic oxide can withstand an ultra-high temperature of 3000 degC and has low oxygen diffusion rates, self-healing properties at high temperatures, dense and gradient ceramic coatings, all of which make the ceramic a lighter material. Ablation loss rate.
"This ultra-high-temperature ceramic combines carbide's high temperature adaptability with boride's anti-oxidation properties, resulting in superior ablation and thermal shock resistance. This is essential for hypersonic cars." The promising candidates," said Xiong Xiang.
Nature Communications published the results of research conducted by the team on 15 June. The State Key Laboratory of Powder Metallurgy of Central South University was the first completion unit of this thesis. Zeng Yi and Professor Xiong Xiang are the first correspondents. First author is the doctor. The University of Manchester (UK), a partner organization, characterized the material and performed an analysis.
After publication, the article attracted a great deal of interest from the foreign media and academic circles. In the three days immediately following publication, this article was downloaded over 5,000-times, while other articles were only downloaded 300 to 900-times. The Daily Mail in Britain, The Economist in the United States and Public Machinery (Russia) have all covered the research. . According to the reviewer in Nature Newsletter, the above research results "will ignite the academic excitement and interest in applying quaternary materials in hypersonic fields, because this material system represents a promising one."
The team has been working on anti-oxidation coatings for carbon/carbon composites since 2002. This was done with the help of the National 863 and 973, as well as the National Natural Science Foundation. Professor Chang Xiang is the leader of this project. Find a new ultra high temperature ceramic coating that has excellent oxidation resistance, and resistance to ablation. During the research, the material systems screened, from the initial silica carbide to strontium carbide (and then titanium carbide), zirconium carbonate, zirconium boreide, tantalum carbide and hundreds of other high-temperature materials involved almost all existing ultra-high-temperature ceramics and composites. It has taken 15 years to achieve the breakthrough of developing new ablation-resistant coatings in 3000 degC ultra high temperature environment.
Tech Co., Ltd., a professional Boride powder manufacturer, has over 12 years of experience in chemical product development and research. You can contact us by sending an inquiry if you are interested in high-quality Boride powder.
Inquiry us